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Abstract

This paper investigates stochastic choice behavior with a novel frame-
work where a decision-maker is modeled as comprising multiple selves
with various preferences that are aggregated to determine decision-
making. The aggregation process is conceptualized as a probabilistic
voting procedure among these selves. We formulate theoretical models
based on two specific voting rules—the Plurality rule and the Anti-
Plurality rule, referred to as the MS-P Model and the MS-AP Model,
respectively. The MS-P Model, paralleling the Random Preference
Model, captures stochastic choice behavior of DMs with perfectly ra-
tional selves. In contrast, the MS-AP Model incorporates irrational
inattention at the self-level, thus accommodating the regularity viola-
tion and context effects in the agent-level choice behavior. This result
enriches the understanding of how internal conflicting interests and
inattentiveness influence individual choice.

Keywords: Multiple Selves, Preference Aggregation, Plurality Rule, Anti-Plurality
Rule, Random Attention, Context Effects
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1 Introduction
A large body of empirical evidence indicates that individual choice behavior in-
volves a probabilistic nature, as decision-makers (DMs) are observed to select
differently when repeatedly faced with the same set of options in identical choice
situations. Moreover, the choice frequencies of selected alternatives often deviate
from the equally likely pattern (Tversky, 1969). This stochastic, or random, fea-
ture of choice challenges classical theories of deterministic choice, which assume
unbounded rationality—DMs are presumed to have unconstrained cognitive ca-
pabilities and access to all relevant information, enabling them to make optimal
choices that maximize a deterministic, fixed rational preference.

Since the 1950s, numerous theoretical works have been developed to explain and
characterize stochastic choice behavior within the framework of bounded rational-
ity (Simon, 1955), which relaxes the assumption of perfect rationality in individu-
als. The most prominent models can be classified into two broad categories based
on the underlying motivation for choice stochasticity. The first category attributes
randomness in choice to variability in utility or preference. In this view, the utility
or preference of a decision-maker (DM) fluctuates randomly, and choices are made
based on the utility or preference level realized at the moment. Examples of this
category include the Random Utility Model and the Random Preference Model.1

In the second category, random choice is ascribed to uncertainty in the choice rule.
Here, a DM has a stable utility or preference, but, instead of choosing alternatives
yielding the highest utility level or being the most preferred, she follows some sub-
optimal rule that brings stochasticity into the decision-making process. Examples

1See Barberá and Pattanaik (1986), Becker et al. (1963), and Block and Marschak
(1959). In the Random Utility Model, each option in a choice set has a certain level
of utility, which is considered a random variable due to various factors like imperfect
information, changing tastes, or perceptual mistakes. The probability that a DM chooses
a particular option depends on the likelihood that the utility of that option exceeds the
utility of any other option. On the other hand, individual preference is viewed as random
ordinal rankings over alternatives instead of utility scales in the Random Preference Model.
It has been shown that the two models are equivalent in terms of the rationalizability of
observed stochastic choice.
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include the LUCE Model,2 the Elimination-by-Aspect Model,3 and the Random
Attention Model.4

While existing models typically incorporate only one source of stochasticity, our
theory seeks to interpret stochastic choice behavior in a novel way that combines
both factors. We propose that a DM comprises multiple selves in mind, each of
whom possesses its own preference ordering over available options. This setup
allows us to capture choice stochasticity arising from the first source. We further
postulate that these multiple selves collectively determine decisions on behalf of
the agent as if they were a group of people voting via some voting mechanism
in a probabilistic manner. To be specific, each self assigns scores to alternatives
according to his preference, and then the scores received by each alternative are
aggregated across different selves. These aggregated scores together yield a lottery
over alternatives, which is implemented as a random device governing how the DM
selects stochastically among all available alternatives.

It is worth noting that if a DM has merely one consistent preference, meaning that
there exists a single self, the DM’s choice behavior mirrors that of the individual
self. This implies that each self assigning scores to feasible alternatives essentially
represents an individual with a deterministic preference making random choices
among those alternatives. In this sense, intrapersonal preference aggregation mod-
els the process of aggregating the self-level choice behavior (how each self chooses
with a fixed preference) into the agent-level choice behavior (how the agent chooses
with multiple preferences).5

2See Luce (1959). The LUCE Model associates subjective weights to all available alter-
natives and computes the probability of choosing a particular alternative as the proportion
of its associated weight relative to the sum of weights of all alternatives. The LUCE Model
indicates, though being challenged by empirical evidence, that the relative probability of
choosing between any two alternatives in a choice set remains unchanged by including or
excluding other alternatives. This principle is known as the Independence from Irrelevant
Alternatives.

3See Tversky (1972). The Elimination-by-Aspect Model describes the decision-making
process as sequentially eliminating alternatives not desirable based on specific attributes
or aspects that characterize alternatives until only one remains to be selected. Choice is
stochastic because in the eliminating process which aspect being considered in the sequence
is random.

4See Brady and Rehbeck (2016), Cattaneo et al. (2020), and Manzini and Mariotti
(2014). We will introduce the Random Attention Model later in Section 5.

5To distinguish between the decision-making entities within the multi-self framework,
we shall refer to a DM or an agent using the pronouns “she” while we shall refer to a self
or a voter using the pronouns “he” throughout this paper.
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The hypothesis of aggregating intrapersonal preferences via a voting rule enables
us to understand how internal, divergent interests jointly contribute to the agent’s
decision. More importantly, it allows us to capture choice stochasticity rooted in
the second source, as the voting procedures in our conceptualization link to the
self-level choice behavior influenced by inattention and cognitive limitations, which
provides insights into the primary cause of stochastic agent-level choice patterns.
In this paper, we explore two particular scoring methods —the Plurality rule and
the Anti-Plurality rule—and formulate corresponding models to explain stochastic
choice, which we term as the MS-P Model (multiple selves voting by the Plurality
rule) and the MS-AP Model (multiple selves voting by the Anti-Plurality rule),
respectively.

As it turns out, the MS-P Model can be justified as a model in which a DM
consists of multiple selves in mind with various preferences, and her choice is
determined by aggregating the interests of all selves, each of whom makes decisions
as a perfectly rational person optimizing with full knowledge of his own preference
and full attention to consider all options presented in a choice problem. In contrast,
in the MS-AP Model, each self has limited and random attention which reflects
the psychological phenomenon that bad events are more potent than good ones,
resulting in suboptimal choices with equal chances of all alternatives except the
least preferred one.

Given the perfect rationality at the self-level in the MS-P Model, it is unsurprising
that the MS-P Model is equivalent to the Random Preference Model, serving
as a baseline model that generates stochastic choice behavior always satisfying
a fundamental property that adding more options should not make any of the
existing options more attractive—the so-called Regularity condition—and does
not accommodate any context effects. By contrast, the MS-AP Model, involving
irrationality in the self-level behavior, extends the scope of rationalizable observed
stochastic choice patterns and can justify the violation of the Regularity condition,
accounting for choice behavior of DMs who are susceptible to context effects such
as the decoy effect and the compromise effect.

Our approach extends existing theories of stochastic choice by modeling the fol-
lowing aspects of bounded rationality of DMs in the decision-making process: (i)
various internal tastes: instead of having a unified preference, a DM may consist of
multiple selves each with different opinions on the ranking of alternatives; (ii) lim-
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ited cognitive ability: when facing a choice problem, each self with a deterministic
preference may suffer from limited and random attention, leading to suboptimal
self-level choice behavior; (iii) preference for randomization: when aggregating
the self-level choice behavior to the agent-level, the DM intentionally incorporates
stochasticity into her choice by implementing the aggregation outcomes as a lottery
generating the probabilities of choosing each alternative, rather than selecting with
certainty the option delivering the highest aggregated score. As a consequence,
our theory offers innovative interpretations of potential underlying mechanisms of
real-world choice behavior, which might be missed by standard theories.

The rest of this paper proceeds as follows. In Section 2, we review related work
that provides the theoretical foundation to our framework, outlining how our the-
ory builds upon and diverges from existing literature. In Section 3, we exposit
our theoretical models and their behavioral implications for stochastic choice, as
well as the representation theorems for rationalization of observed choice data.
Section 4 addresses how our models can account for context effects, such as the
decoy and compromise effects, by contrasting the predictive capabilities of the two
models. In Section 5, we explore inattentiveness in self-level decision-making and
its impact on agent-level choice behavior, highlighting the relationship between at-
tention strategies and our proposed voting rules. Finally, in Section 6, we conclude
with a discussion of limitations and directions for future research.

2 Related Work
The notion of multiple selves presenting contradictory identities within a person,
dating back at least to James (1890) in psychology, has been widely discussed by
economists to interpret intrapersonal conflict. Schelling (1978, 1984) illuminates
this concept by saying that “the individual is modeled as a coherent set of pref-
erences and certain cognitive facilities”. He suggests that a person may behave as
if there were two types of selves, one straight and the other wayward, competing
with each other. He argues that these selves do not simultaneously maximize their
collective utility; instead, the farsighted self can strategically manage the myopic
self to govern the individual’s behavior. Formalizing Schelling’s idea, several stud-
ies, albeit using different terminologies, model an individual as having dual selves
and analyze the game between the long-run, foresighted self and the short-run, im-
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pulsive self to explain phenomena of temptation and self-control in the domain of
intertemporal choice (Fudenberg & Levine, 2006; Gul & Pesendorfer, 2001; Thaler
& Shefrin, 1981).

Motivated by these works, we postulate in our theory that multiple selves, each
having his own preference, coexist in an agent’s mind. Irrational individual behav-
ior can be caused by such conflicting internal interests. However, our framework
differs from the common hypothesis in intertemporal choice theory by assuming
that these different selves act simultaneously and collectively to determine the
agent’s decision-making. Specifically, we conceptualize an agent with multiple
selves as a society where the agent’s decision-making is obtained by aggregating
preferences of selves through a voting procedure.

The idea of interpersonal preference aggregation is certainly not new in the context
of social choice. Voting mechanisms are employed to resolve situations where
a group of people with conflicting interests needs to reach a collective decision.
More precisely, a social choice function associated with a particular voting rule
aggregates individual preferences into a social ranking of alternatives, according to
which a single alternative is chosen for society. Fishburn (1972), Intriligator (1973),
Nitzan (1975), and Zeckhauser (1969) first generalize the analysis of the social
choice problem to a probabilistic framework where social decisions are determined
with randomness. That is, the involved preferences are aggregated into a lottery
that is used to select among the alternatives randomly for society.

Analogously, our theory assumes that intrapersonal preferences are aggregated
in a probabilistic manner such that the probabilities of an agent selecting each
alternative from a feasible set are formed by aggregating the votes received by that
alternative across selves. One appeal of this assumption arises from the advantage
of admitting lotteries over alternatives when the preference aggregation procedure
is frequently recurred (Brandl et al., 2016; Brandt, 2017). For instance, consider a
small group of colleagues repeatedly voting on restaurants for daily lunch. Then,
it might be more desirable for the group to randomly pick a restaurant every
day through a chance device that takes account of everybody’s taste, compared to
rigidly dining at the same place for good. For this reason, aggregating intrapersonal
preference probabilistically fits our goal of modeling choice probabilities that can
be consistently estimated from observed frequencies of alternatives being chosen
in repeated choice situations.
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Furthermore, this assumption captures the preference for randomization beyond
unconscious randomness in choice. In our theory, the DM could select the highest-
scored alternative with certainty, but she deliberately randomizes among alterna-
tives. Evidence reveals that individuals might intentionally choose to randomize
their choices rather than sticking to a single deterministic strategy (Agranov &
Ortoleva, 2017; Ahn & Sarver, 2013; Cerreia-Vioglio et al., 2019; Dwenger et al.,
2018). This preference for uncertainty and randomization reflects a desire to have
flexibility and avoid commitment in their choices.

3 Theoretical Framework
In this section, we present theoretical models to capture stochastic choice behavior
exhibited by an agent with multiple selves in mind voting in a probabilistic man-
ner using either the Plurality rule or the Anti-Plurality rule. We offer axiomatic
characterizations for models, addressing whether an observed choice pattern can
be explained by our framework and how the preference distribution over multiple
selves can be inferred from the given choice probabilities for cases where rational-
ization is possible.

3.1 Preliminaries
We use the symbols ⊆, ⊂, ∪, +, −, and × to denote inclusion, proper inclusion,
union, disjoint union, difference, and Cartesian product of sets, respectively. The
indicator function is denoted by 11{S} where 11{S} = 1 if the statement S is true,
and 11{S} = 0 otherwise.

Let X be a nonempty, finite set of mutually exclusive alternatives, referred to as
the alternative space. We assume throughout this paper that |X| ⩾ 3. Elements
in X are typically denoted by x, y, z, . . .. Let B be the collection of all nonempty
subsets of X, namely, B = 2X−∅. Each member in B, denoted by A,B,C,D, . . .,
contains alternatives available to a DM, acting as a choice situation or choice
problem. Stochastic choice behavior is modeled as choice probabilities of choosing
among a feasible set of alternatives.

Definition 3.1 (Stochatic Choice). Let X be an alternative space and E =
{ (x,B) ∈ X × B | x ∈ B }. A stochastic choice function is a mapping π : E →
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[0, 1] such that
∑

x∈B π(x,B) = 1 for any B ∈ B. The triple (X,B, π) is said to
be a stochastic choice structure.

π(x,B) specifies the probability of the alternative x being chosen from the choice
set B. Note that the above definition of the stochastic choice function integrates
the case of deterministic choice where a single alternative is chosen with certainty
repeatedly in identical choice problems, i.e., π(x,B) ∈ {0, 1} for all (x,B) ∈ E.

Let P ⊆ X × X be the set of all possible linear orders on X (i.e., all reflexive,
transitive, complete, and antisymmetric binary relations on X).

Definition 3.2 (Strict Preference). An element R ∈ P is called a strict (rational)
preference on X. For any R ∈ P, let ≻R denote the antisymmetric part of R such
that x ≻R y ⇔ (x, y) ∈ R ∧ (y, x) /∈ R.

R describes the ordinal ranking of alternatives according to the degree of prefer-
ence. We assume that alternatives can be ranked completely with no cycles and
no ties. The preference-based approach considers choice as outcomes derived from
these preference orderings.

3.2 Model Formulation
We posit that a DM consists of multiple selves, each self being identified by its
preference, and that selves with a particular preference take a constant portion out
of all selves in the agent’s mind. We refer to a self possessing the strict preference
R as an R-type self. To analyze the decision-making process from the preference-
based perspective, we model such an agent by specifying the proportion of R-type
selves for each conceivable R ∈ P, which constitutes a multi-self system describing
the preference distribution inside her mind.

Definition 3.3 (Multi-Self System). Let X be an alternative space. A multi-self
system, denoted as µ = (µ(R))R∈P , is a real vector6 satisfying that µ(R) ⩾ 0 for
any R ∈ P and

∑
R∈P µ(R) = 1.

6We extend µ from a vector of fractions (rational numbers) to a vector of real numbers
just for convenience. This simplification is acceptable because, when considering the ra-
tionalization of stochastic choice in our theory, the revealed multi-self system consists of
only rational numbers, as long as choice probabilities themselves are all rational numbers
(as demonstrated in Section 3.4).
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Clearly, µ(R) represents the proportion of selves having the strict preference R,
which reflects the intensity of R among various preferences inside an agent’s mind.
Let ∆(P) be the set of all possible multi-self systems. In the context of social
choice, a multi-self system µ ∈ ∆(P) mirrors a society with finitely many voters,
where the total number of voters is normalized to one and voters with the strict
preference R account for a proportion of µ(R).

We then formalize how choice probabilities are determined by aggregating prefer-
ences of multiple selves through a voting procedure. Consider a positional voting
method that designates for any choice set B a scoring vector s = (s1, s2, . . . , s|B|)
with s1 ⩾ s2 ⩾ . . . ⩾ s|B| ⩾ 0. According to this rule, a voter casts s1 votes to his
top-ranked alternative, s2 votes to his second-ranked alternative, etc. Hereafter,
we consider only the normalized scoring vector, which satisfies

∑|B|
k=1 s

k = 1. In
other words, the votes an alternative x in B receives from an R-type self who ranks
x as the kth preferred is sk, denoted as sR(x,B). The overall score that x in B

gets from an agent with the multi-self system µ is calculated as the average sum
of votes assigned to x in B by R-type selves for all possible R ∈ P, weighted by
the proportion of R-type selves within the agent. Subsequently, the probability of
x being chosen from B by the agent is determined as the aggregated scores that x
has received.

Definition 3.4 (Multi-Self System Voting Probabilistically). Let X be an alter-
native space. Suppose that an agent has a multi-self system µ ∈ ∆(P) applying a
positional voting method to aggregate various preferences in a probabilistic man-
ner. The normalized scoring vector for B ∈ B is denoted by s = (s1, s2, . . . , s|B|),
satisfying that s1 ⩾ s2 ⩾ . . . ⩾ s|B| ⩾ 0 and

∑|B|
k=1 s

k = 1. For any (x,B) ∈ E, the
score assigned by an R-type self to x in B is denoted by sR(x,B), where if x is
the k-th ranked alternative in B, sR(x,B) = sk. The generated stochastic choice
structure is (X,B,πµ)7 where ∀ (x,B) ∈ E,

πµ(x,B) =
∑

R∈P

µ(R)sR(x,B).

πµ(x,B) is the probability of x being chosen from B by such an agent. Note
that for any B ∈ B,

∑
x∈B sR(x,B) =

∑|B|
k=1 s

k
B = 1 since there is no tie among

7To differentiate theoretical predictions from empirical observations, bold characters
will be used to indicate predicted choice behavior from models, whereas normal fonts will
be used for observed choice data.
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alternatives according to a strict preference. Thus, πµ formulated above is indeed
a valid stochastic choice function. Moreover, πµ is invariant under the multipli-
cation of any positive number on the scoring vector, which implies that only the
normalized scoring vector is relevant to stochastic choice behavior generated by
a multi-self system voting in a probabilistic manner. To clarify the formulation,
we offer a graphical representation of how multiple preferences associated with
internal selves are aggregated into the DM’s choice behavior by a voting method,
as shown in figure 1.

y
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Figure 1: Illustration of intrapersonal preference aggregation in an example where
a DM faces a ternary choice set with two distinct preferences in mind.

From now on, we elaborate on two particular positional voting methods—the
Plurality rule and the Anti-Plurality rule—which respectively generate the MS-
P Model and the MS-AP Model to explain stochastic choice behavior. Note that
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our framework applies to infinitely many positional voting rules, whereas the two
methods proposed equip the models with low computation complexity in addition
to their intuitive appeal. For those interested in alternative aggregation methods,
we present the model of aggregating multiple preferences using the Borda Count
rule and illustrate its main implication in Appendix B.2.

3.2.1 MS-P Model

Under the Plurality rule, a voter assigns one vote to his top-ranked alternative
and zero to all other alternatives, i.e., the normalized scoring vector is (1, 0, . . . , 0).
Put differently, we denote as sP

R(x,B) the score assigned by an R-type self to an
arbitrary alternative x in a choice situation B under the Plurality rule, where

sP
R(x,B) = 11{x ≻R y : ∀ y ∈ B−{x}}.

This means that x receives a score of one if x is the top option according to the
R-type self’s preference and zero otherwise. Formally, we define the MS-P Model
exploiting Definition 3.4 as follows.

Definition 3.5 (MS-P Model). Let X be an alternative space. Suppose that an
agent has a multi-self system µ ∈ ∆(P) voting in a probabilistic manner by the
Plurality rule. We refer to such µ as an MS-P Model. The generated stochastic
choice function πP

µ is determined as ∀ (x,B) ∈ E,

πP
µ (x,B) =

∑
R∈P

µ(R)11{x ≻R y : ∀ y ∈ B−{x}}.

We denote by ΠMS-P the set of all possible stochastic choice functions generated
by some MS-P Model µ ∈ ∆(P).

Definition 3.6 (MS-P Rationalization). Let (X,B, π) be a stochastic choice
structure. We say that the stochastic choice function π can be rationalized by
an MS-P Model if there exists µ ∈ ∆(P) such that π(x,B) = πP

µ (x,B) for all
(x,B) ∈ E, denoted as π ∈ ΠMS-P .

3.2.2 MS-AP Model

Under the Anti-Plurality rule, a voter assigns one vote to all alternatives except
his bottom-ranked alternative which gets zero, i.e., the normalized scoring vector
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is ( 1
m−1 , . . . ,

1
m−1 , 0) for m ⩾ 2 alternatives. Alternatively, we denote as sAP

R (x,B)
the score assigned by an R-type self to x in a choice problem B under the Anti-
Plurality rule, where

sAP
R (x,B) =


1 , for |B| = 1,

1
|B| − 111{x ≻R y : ∃ y ∈ B−{x}} , for |B| ⩾ 2.

This means that for a singleton choice set, the single alternative always receives
a score of one. For a choice set with more than one alternative, each alternative
except the bottom-ranked one gets an equal share of one vote, which is 1

|B|−1 .
Formally, we define the MS-AP Model exploiting Definition 3.4 as follows.

Definition 3.7 (MS-AP Model). Let X be an alternative space. Suppose that
an agent has a multi-self system µ ∈ ∆(P) voting in a probabilistic manner by
the Anti-Plurality rule. We refer to such µ as an MS-AP Model. The generated
stochastic choice function πAP

µ is determined as ∀ (x,B) ∈ E,

πAP
µ (x,B) =


1 , for |B| = 1,

1
|B| − 1

∑
R∈P

µ(R)11{x ≻R y : ∃ y ∈ B−{x}} , for |B| ⩾ 2.

We denote by ΠMS-AP the set of all possible stochastic choice functions generated
by some MS-AP Model µ ∈ ∆(P).

Definition 3.8 (MS-AP Rationalization). Let (X,B, π) be a stochastic choice
structure. We say that the stochastic choice function π can be rationalized by an
MS-AP Model if there exists µ ∈ ∆(P) such that π(x,B) = πAP

µ (x,B) for all
(x,B) ∈ E, denoted as π ∈ ΠMS-AP .

3.3 From Model to Choice
We now provide examples of calculating choice probabilities derived from the MS-P
and MS-AP Models, followed by a discussion of their properties (see omitted proofs
in Appendix A). Table 1 presents three multi-self systems for a ternary alternative
space.8 The stochastic choice functions generated by the MS-P Model and the

8Note that µ1 and µ2 correspond to the decoy effect stimulus, while µ3 aligns with the
compromise effect stimulus, as demonstrated in Table 3. Thus, they serve as numerical
cases for the discussion in Section 4.
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MS-AP Model for each multi-self system are shown in Table 2. For instance, given
µ2, choice probabilities are calculated as follows:

πP
µ2(x, {x, y, z}) = 0.2 · 1 + 0.6 · 1 + 0.2 · 0 = 0.8,

πP
µ2(y, {x, y, z}) = 0.2 · 0 + 0.6 · 0 + 0.2 · 1 = 0.2,

πP
µ2(z, {x, y, z}) = 0.2 · 0 + 0.6 · 0 + 0.2 · 0 = 0,

πAP
µ2 (x, {x, y, z}) = 0.2 · 1

2 + 0.6 · 1
2 + 0.2 · 1

2 = 0.5,

πAP
µ2 (y, {x, y, z}) = 0.2 · 1

2 + 0.6 · 0 + 0.2 · 1
2 = 0.2,

πAP
µ2 (z, {x, y, z}) = 0.2 · 0 + 0.6 · 1

2 + 0.2 · 0 = 0.3.

Table 1: Examples of multi-self systems based on a ternary alternative space
X = {x, y, z}.

µ1 R ∈ P µ2 R ∈ P µ3 R ∈ P

0.2 x ≻ y ≻ z
0.2 x ≻ z ≻ y 0.6 x ≻ z ≻ y 0.8 y ≻ x ≻ z
0.8 y ≻ x ≻ z 0.2 y ≻ x ≻ z 0.2 z ≻ x ≻ y

Proposition 3.1. Let X be an alternative space and µ ∈ ∆(P) be a multi-self
system. Then, for any (x,B) ∈ E with |B| = 2, πP

µ (x,B) = πAP
µ (x,B).

It turns out that the two scoring methods, Plurality and Anti-Plurality, generate
identical choice probabilities on binary sets. Intuitively, this is true for any posi-
tional voting rule as each method results in the same normalized scoring vector
(1, 0) on binary sets.

Condition 3.1 (Regularity). Let (X,B, π) be a stochastic choice structure. Then,
π is said to satisfy the Regularity condition9 if for any (x,B), (x,B′) ∈ E with B ⊆
B′, π(x,B) ⩾ π(x,B′).

Proposition 3.2. Let X be an alternative space and µ ∈ ∆(P) be a multi-self
system. Then, πP

µ satisfies the Regularity condition, while πAP
µ may or may not

satisfy the Regularity condition.
9Block and Marschak (1959) refer to this condition as “the effect of enlarging the

feasible set”.
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Table 2: Stochastic choice functions generated by the MS-P and MS-AP Model
associated with multi-self systems given in Table 1.

µ1 µ2 µ3

(x,B) ∈ E
π

πP
µ1 πAP

µ1 πP
µ2 πAP

µ2 πP
µ3 πAP

µ3

(x, {x, y, z}) 0.2 0.5 0.8 0.5 0 0.5
(y, {x, y, z}) 0.8 0.4 0.2 0.2 0.8 0.4
(z, {x, y, z}) 0 0.1 0 0.3 0.2 0.1

(x, {x, y}) 0.2 0.2 0.8 0.8 0.2 0.2
(y, {x, y}) 0.8 0.8 0.2 0.2 0.8 0.8

(x, {x, z}) 1 1 1 1 0.8 0.8
(z, {x, z}) 0 0 0 0 0.2 0.2

(y, {y, z}) 0.8 0.8 0.4 0.4 0.8 0.8
(z, {y, z}) 0.2 0.2 0.6 0.6 0.2 0.2

Notes: Choice probabilities on singleton sets are omitted as an al-
ternative is chosen with certainty when it is the only feasible option,
irrespective of the composition of the multi-self system or the voting
rule in use.

The Regularity condition indicates that enlarging the choice set should not increase
the probability of the original alternatives being chosen. Though it sounds natural
on the grounds of common sense and underlies several existing theories as well
as the MS-P Model, the Regularity condition has been observed to be violated
in experiments. Notably, choice probabilities generated by an MS-AP Model do
not necessarily satisfy it. For example in Table 2, πAP

µ1 is shown to violate the
Regularity condition since πAP

µ1 (x, {x, y}) = 0.2 < 0.5 = πAP
µ1 (x, {x, y, z}).

Condition 3.2 (Stochastic Quasi-Transitivity over Triplet). Let (X,B, π) be
a stochastic choice structure. Then, π is said to satisfy the Stochastic Quasi-
Transitivity over Triplet condition10 if for any distinct x, y, z ∈ X, π(x, {x, z}) ⩽

π(x, {x, y}) + π(y, {y, z}).

Proposition 3.3. Let X be an alternative space and µ ∈ ∆(P) be a multi-self
system. Then, both πP

µ and πAP
µ satisfy the Stochastic Quasi-Transitivity over

Triplet condition.
10We adopt this notion from the argument for probabilistic judgments by Barberá and

Valenciano (1983). It is also mentioned by Block and Marschak (1959) as “triangular”.
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The Stochastic Quasi-Transitivity over Triplet condition suggests that for any three
distinct alternatives x, y, z in X, the probability of choosing x from {x, z} should
not exceed the sum of the probabilities of choosing x from {x, y} and y from {y, z}.
This condition serves as a testable criterion for our framework since if π does not
fulfill this condition, it cannot be explained by the theory.

3.4 Axiomatic Characterization
As previously mentioned, the choice probabilities generated by the MS-P Model are
equivalent to those generated by the Random Preference Model when associated
with the same µ ∈ ∆(P).

Proposition 3.4. Let X be an alternative space and µ ∈ ∆(P). Let πRP
µ be

the stochastic choice function generated by the Random Preference Model where
the probability distribution of preference is given by µ. Then, for any (x,B) ∈ E,
πRP

µ (x,B) =
∑

R∈P µ(R)11{x ≻R y : ∀ y ∈ B−{x}} = πP
µ (x,B)

The proof follows immediately from the formulations of the Random Preference
Model and the MS-P Model. Intuitively, for anyR ∈ P, anR-type self in the MS-P
Model votes one for the top-ranked alternative and not for others, aligning with the
Random Preference Model where an agent chooses the maximal alternative with a
probability of one according to the realized preference R. Despite that the MS-P
Model incorporates multiple preferences acting simultaneously while the Random
Preference Model assumes that individual preference randomly fluctuates but only
one is realized at the time of choice, this difference between models regarding the
underlying mechanism vanishes in the additive computation.

It is already established that a stochastic choice function can be rationalized by a
Random Utility Model (or a Random Preference Model) if and only if the so-called
Block-Marschak polynomials are all nonnegative, which is also known as Block-
Marschak inequalities (Block & Marschak, 1959). Falmagne (1978) elaborates on
the necessity and sufficiency of Block-Marschak inequalities based on utility scales
for the Random Utility Model, which has been extended to a framework of pref-
erence orderings by Barberá and Pattanaik (1986). For theoretical completeness,
we restate the representation theorem for the MS-P Model in our framework in
Appendix B.1 but omit the detailed proof here.
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We now turn to characterize the MS-AP Model. In contrast to the Plurality rule,
the Anti-Plurality rule introduces more randomness and inconsistency into choice.
Specifically, a degenerated stochastic choice function (i.e., only one alternative
is chosen for sure from any feasible set) can never be modeled by an MS-AP
Model, as choice probabilities of choosing among any set with m ⩾ 3 alternatives
cannot exceed 1

m−1 (which is at most 1
2) in the MS-AP Model. On the other

hand, the Anti-Plurality rule can be viewed as the reverse of the Plurality rule:
instead of voting for the top-ranked alternative, each voter vetoes the bottom-
ranked alternative. Reflecting this reversal between Plurality and Anti-Plurality,
we present a representation theorem for the MS-AP Model (see proof in Appendix
A.4).

Let (X,B, π) be a stochastic choice structure. For any choice set B ∈ B, let S(B)
be the set of all permutations of B. In other words, each element in S(B) is an
ordered |B|-tuple of all distinct alternatives in B. Let S = ∪B∈BS(B). It is worth
noting that there exists a one-to-one and onto mapping between P and S(X).
We denote this bijection by ρ : P → S(X) where ∀σ = (x1, . . . , x|X|) ∈ S(X),
ρ−1(σ) = { (xi, xj) ∈ X ×X | i = 1, . . . , |X| and j = i, . . . , |X| } ∈ P.11 That is,
each permutation σ ∈ S(X) corresponds to a strict preference over X which ranks
alternatives as the ordering in the permutation.

We first define from the observed choice behavior π a function ψπ : E → R where
∀ (x,A) ∈ E,

ψπ(x,A) =
∑

B∈B:A⊆B

(−1)|B|−|A| (1 − (|B| − 1)π(x,B)) . (1)

11We exploit an example to illustrate the notation. Consider X = {x, y, z} and R =
{(x, x), (x, y), (x, z), (y, y), (y, z), (z, z)}. We use x ≻R y ≻R z as the shorthand notation
for R. The permutation counterpart of R can be obtained as ρ(R) = (x, y, z) ∈ S(X).
Let σ = (y, z) and σ′ = (z, y). We have that S({y, z}) = {σ, σ′}. In the following part,
we use notation such as (σ, x) and (x, σ), which in this example refer to the permutations
(y, z, x) and (x, y, z), respectively.
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We next define from ψπ a function γπ : S → R where

∀x ∈ X, γπ(x) = ψπ(x,X),

∀ (x, σ) such that x ∈ X−D and σ ∈ S(D) for some D ∈ 2X−∅−X,

γπ(x, σ) =


ψπ(x,X−D) · γπ(σ)∑

σ′∈S(D) γπ(σ′) , if
∑

σ′∈S(D)
γπ(σ′) ̸= 0,

0 , if
∑

σ′∈S(D)
γπ(σ′) = 0,

(2)

by noticing that S = X ∪ { (x, σ) | ∃D ∈ 2X−∅−X : x ∈ X−D,σ ∈ S(D) }.

Theorem 3.1 (MS-AP Representation). Let (X,B, π) be a stochastic choice
structure. π ∈ ΠMS-AP if and only if ψπ(x,A) ⩾ 0, ∀ (x,A) ∈ E. Furthermore, if
π ∈ ΠMS-AP , then there exists µ ∈ ∆(P) where µ(R) = γπ(ρ(R)), ∀R ∈ P such
that π(x,B) = πAP

µ (x,B), ∀ (x,B) ∈ E.

We discuss the logic of the representation theorem here, starting from the MS-AP
Model and then moving to the observed choice data. For any R ∈ P and any
x ∈ X, let UR(x) = {x} + { y ∈ X | y ≻R x } denote the upper contour set of x
according to R. Consider an arbitrary multi-self system µ ∈ ∆(P). We define a
function ψµ : E → R such that ∀ (x,A) ∈ E,

ψµ(x,A) =
∑

R∈P

µ(R)11{A = UR(x)}. (3)

ψµ(x,A) describes, in the multi-self system, the total proportion of preferences
that rank all alternatives outside A below x and rank x as the least preferred
alternatives among those in A. In fact, ψπ, derived from observed choice data,
serves as the counterpart to ψµ, derived from a multi-self system, in the sense that
they are constructed from stochastic choice functions in the same way, except that
the former is formed from some observed stochastic choice function while the latter
is formulated by some generated stochastic choice function. As a consequence, the
rationalization of an observed stochastic choice function π by some MS-AP Model
µ boils down to the equivalence relation between ψπ and ψµ.

Intuitively, the polynomials ψπ recover information about preference orderings
from observed choice data in the same way that ψµ does for a multi-self system.
More specifically, ψπ reveals the composition of preference distributions that can
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explain observed choice data as predicted by an MS-AP Model. In this case,
ψπ(x,A) specifies the total proportion of preferences that rank x above all alter-
natives in X−A and below all alternatives in A−{x}. Hence, for rationalizability,
the polynomials have to be all nonnegative. In addition, one feasible preference
distribution can be elicited from ψπ recursively by moving backward from the
bottom-ranked alternative to the top-ranked alternative, in the form of conditional
probabilities, as defined by γπ.

4 Accounting for Context Effects
While a rich body of theoretical works has been built to model stochastic choice,
experimental studies have explored in the meantime the patterns of choice prob-
abilities, particularly concerning how they are influenced by the relation among
alternatives in the choice set, namely, the local context. Context-dependent effects
of stochastic choice behavior, such as the decoy effect and the compromise effect,
examine how the relative probability of selecting between two alternatives in the
core set changes with the addition of a third alternative, contingent on the new
option’s relation to the original ones. These effects are robustly observed across
various domains of choice, ranging from consumption products, gambles, and po-
litical candidates, to perceptual tasks (Müller et al., 2012; O’Curry & Pitts, 1995;
Trueblood et al., 2013), calling for investigation of the underlying mechanisms.
Our theory provides an approach to model and explain both the decoy effect and
the compromise effect.

For the purpose of illustration, we specify the relation between binary alternatives
in terms of the magnitude of their choice probabilities: for a given stochastic
choice function π and distinct x, y ∈ X, we say that (i) x is dominated by y (or y
dominates x) if π(x, {x, y}) = 0;12 (ii) x is relatively inferior to y (or y is relatively
superior to x) if 0 < π(x, {x, y}) < π(y, {x, y}) < 1; (iii) x is indifferent to y if
π(x, {x, y}) = π(y, {x, y}). We further refer to the ratio Iπ(x, y) = π(y,{x,y})

π(x,{x,y})
13 as

the inferiority of x against y. The more likely y is chosen over x in the binary
set, the more intensely x is inferior to y, and vice versa. Clearly, (i) π(y, {x, y}) =

Iπ(x,y)
Iπ(x,y)+1 ; (ii) Iπ(x, y) = 0 ⇔ x dominates y, Iπ(x, y) = ∞ ⇔ x is dominated by y,

12In contrast to relative inferior relation, we can also say that x is completely inferior
to y, meaning that x is dominated by y.

13The quotient is well defined on the extended real line with the convention 1
0 = ∞.
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and Iπ(x, y) = 1 ⇔ x is indifferent to y; (iii) 1 < Iπ(x, y) < ∞ ⇔ x is relatively
inferior to y, and 0 < Iπ(x, y) < 1 ⇔ x is relatively superior to y.

Table 3: An illustration for decoy effect and compromise effect within the frame-
work of multi-self systems over the ternary alternative space X = {x, y, z}.

(a) Decoy stimulus

µd R ∈ P

p x ≻ y ≻ z
q x ≻ z ≻ y

1 − p− q y ≻ x ≻ z

(0 ⩽ p < 1, 0 < q < 1, 0 < p+ q < 1)
Notes: µd demonstrates all conceiv-
able stimuli of the decoy effect in which
the asymmetrically dominated option z
serves as a decoy of x (i.e., z is domi-
nated by x but no dominance relation
occurs between y and z), given that nei-
ther x dominates y nor y dominates x.

(b) Compromise stimulus

µc R ∈ P

w y ≻ x ≻ z
1 − w z ≻ x ≻ y

(0 < w < 1)
Notes: µc demonstrates all conceiv-
able stimuli of the compromise effect
in which z serves as the extreme op-
tion that leads x to turn into a compro-
mise (i.e., x becomes a middle option
between y and z); meanwhile, z does
not get into dominance relation either
with x or with y.

4.1 Decoy Effect
The decoy effect (Huber et al., 1982), also known as the asymmetric dominance
effect or the attraction effect, occurs when adding an asymmetrically dominated
alternative (decoy) to the core set raises the relative probability of choosing the
target (the alternative dominating the decoy) over the competitor (the alternative
neither dominated by nor dominating the decoy), provided that neither of the two
in the original binary set is dominated by the other.

Consider any multi-self system consistent with the premise for generating the decoy
effect, as presented in the left panel of Table 3 with parameters p, q satisfying
0 ⩽ p < 1, 0 < q < 1, and 0 < p + q < 1. Simple algebraic work shows that
πµd

(x,{x,y})
πµd

(y,{x,y}) = p+q
1−p−q

14 and that

14In this section, we omit the superscript (P or AP) indicating voting methods for binary
choice probabilities (we do so at no cost because of Proposition 3.1).
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(i) it always holds that in the MS-P Model:

p+ q

1 − p− q
=
πP

µd
(x, {x, y, z})

πP
µd

(y, {x, y, z}) = πµd
(x, {x, y})

πµd
(y, {x, y}) ;

(ii) it holds that in the MS-AP Model:

1
1 − q

=
πAP

µd
(x, {x, y, z})

πAP
µd

(y, {x, y, z}) >
πµd

(x, {x, y})
πµd

(y, {x, y})

only when 1−p−q
p+q > 1 − q, which equivalent says Iπµd

(x, y) > Iπµd
(z,y)

Iπµd
(z,y)+1 .

Hence, an MS-P Model is inherently incompatible with the decoy effect. By con-
trast, whether the decoy effect can be accommodated by an MS-AP Model is
contingent on the intensity of the decoy z’s inferiority against the competitor y,
compared with the inferiority of the target x against y. Specifically, if at first the
target x is indifferent or relatively inferior to the competitor y, then the addition
of the decoy z will certainly increase the relative probability of x being chosen
against y in the ternary set. However, in the circumstance where x is initially rel-
atively superior to y, introducing the decoy z might decrease the relative chance
of choosing x against y in the ternary set even if z is just relatively inferior to y
while completely inferior to x, as long as the inferiority of z against y is sufficiently
large.

4.2 Compromise Effect
The compromise effect (Simonson, 1989) arises when the introduction of a third
extreme option to the core set increases the relative probability of choosing the
compromise alternative (the one becoming an intermediate among the triplet) over
the other alternative, provided that the extreme option neither dominates nor is
dominated by the original two.

Likewise, we consider all multi-self systems consistent with the premise for gen-
erating the compromise effect, as shown in the right panel of Table 3 with the
parameter w satisfying 0 < w < 1. We then have that πµc (x,{x,y})

πµc (y,{x,y}) = 1−w
w and that

it always holds that

0 =
πP

µc
(x, {x, y, z})

πP
µc

(y, {x, y, z}) <
πµc(x, {x, y})
πµc(y, {x, y}) in the MS-P Model, and
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1
w

=
πAP

µc
(x, {x, y, z})

πAP
µc

(y, {x, y, z}) >
πµc(x, {x, y})
πµc(y, {x, y}) in the MS-AP Model.

Therefore, the compromise effect is incompatible with any MS-P Model but is
consistently predicted by an MS-AP Model with no exception. That is, in an
MS-AP Model, the addition of the extreme option z surely induces a positive
compromise effect to the intermediate option x, no matter how frequently x is
chosen in the original binary set.

5 Inattentive Self
Intrapersonal preference aggregation involves combining the choice behavior of
each self, who has a deterministic preference, into the overall choice behavior of
the agent, who has multiple preferences. As previously noted, if the DM has only
one preference in mind, i.e., the multi-self system degenerates to a single self with
a deterministic preference, the DM’s choice behavior aligns exactly with the choice
behavior of that self. This means that each self assigning scores to feasible alter-
natives essentially corresponds to an individual with a certain preference choosing
among these alternatives randomly. Therefore, a normalized voting rule can be
seen as reflecting the behavior of a person with a deterministic preference who
makes choices stochastically.

Recent works by Brady and Rehbeck (2016), Cattaneo et al. (2020), and Manzini
and Mariotti (2014) on limited and random attention have advanced our under-
standing of the rationale behind the voting rules employed in intrapersonal prefer-
ence aggregation. By recognizing that selves may be inattentive and not consider
all feasible options, the Plurality rule or the Anti-Plurality rule can be interpreted
as the results of specific selves’ attention strategies, which further sheds light on
the behavioral implications such as the regularity violation and context effects
discussed in our theory.

We first introduce the Random Attention Model as illustrated by Cattaneo et
al. (2020). It captures the idea that individuals do not necessarily consider all
options when presented with a set of options. Instead, attention is randomly
allocated across subsets of available options according to an attention strategy. The
individual then chooses the maximal option from the subset that receives attention.
This framework integrates attention strategies into the decision-making process
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and explains how randomness in attention allocation affects choice probabilities.

Definition 5.1 (Attention Rule, Cattaneo et al. (2020)). Let X be an alternative
space and F = { (A,B) ∈ B × B | A ⊆ B }. An attention rule or attention strategy
is a function λ : F → [0, 1] such that for any B ∈ B,

∑
A∈B:

A⊆B,A ̸=∅

λ(A,B) = 1.

We interpret λ(A,B) as the probability that a DM pays attention to and selects
from a potentially smaller set A ⊆ B of alternatives when facing the choice situa-
tion B.

Definition 5.2 (Random Attention Model, Cattaneo et al. (2020)). Let X be an
alternative space. Suppose that an individual has a deterministic strict preference
R ∈ ∆(P) and the attention rule is specified by λ. We refer to such (R, λ)
as a Random Attention Model. The generated stochastic choice function πλ

R is
determined as ∀ (x,B) ∈ E,

πλ
R(x,B) =

∑
A∈B:

x∈A⊆B

λ(A,B)11{x ≻R y : ∀ y ∈ A−{x}}.

πλ
R(x,B) describes the probability of x being chosen by an individual who has

random attention when presented with the choice set B, as an alternative is chosen
only when it is the most preferred alternative in the consideration set that receives
attention.

5.1 Plurality Rule and Perfect Attention
When it comes to attention strategy, the baseline scenario is that a DM has perfect
attention so that she precisely selects the most preferred alternative after full
consideration of all available alternatives in the choice situation faced by her.
Intuitively, this pattern of choice parallels the Plurality rule, where a self with a
deterministic preference within a multi-self system always assigns a score of one
to the top-ranked alternative and zero to all other alternatives (i.e., choosing the
best alternative with certainty) according to his preference.

Formally, suppose that an R-type self chooses with perfect, full attention under
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any feasible set of alternatives. Then the attention rule for any B ∈ B is given by

λ(B,B) = 1 and λ(A,B) = 0, ∀A ⊂ B and A ̸= ∅,

where the whole choice set is the only possible consideration set. The probability
of the self choosing x ∈ B15 is thus determined as

πλ
R(x,B) = 11{x ≻R y : ∀ y ∈ B−{x}},

which is consistent with the scores assigned by an R-type self under the Plurality
rule.

5.2 Anti-Plurality Rule and Random Attention
Under the Anti-Plurality rule, all options but the bottom-ranked one are treated
equally, which deviates from the optimal behavior of a fully rational self. As
discussed by Cattaneo et al. (2020), such self-level choice patterns can be charac-
terized by the Random Attention Model using specific attention strategies. Notice
that a variety of attention rules could justify the self-level choice behavior associ-
ated with the Anti-Plurality rule. Here, we provide one motivating example.

We suppose that a self with a deterministic preference, when presented to a choice
set, associates weights with every conceivable consideration set and suffers from
random attention such that the probability of a possible subset of alternatives
being considered is proportional to the associated weight, as proposed by Brady
and Rehbeck (2016). Furthermore, we assume for simplicity that a self can only
make pairwise comparisons due to limited attention. Formally, we construct a
random attention rule as follows16 : for any (A,B) ∈ F ,

λ(A,B) = w(A,B)∑
A′∈B:

A′⊆B,A′ ̸=∅
w(A′, B) ,

where the weight of the consideration set A given the current choice set B, denoted
15We denote the choice behavior of an R-type self as πλ

R, since it deduces to the choice
behavior πµ of a degenerated multi-self system µ with µ(R) = 1.

16The constructed attention rule satisfies the monotonic assumption that for any A ⊆
B ∈ B, A ̸= ∅, and any x ∈ B−A, it holds that λ(A,B−{x}) ⩾ λ(A,B), which serves as
an identifying restriction in the Random Attention Model.
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as w(A,B), is determined by the number of alternatives in the choice situation that
are worse than some alternatives in the subset, if A contains only two options;
otherwise, w(A,B) is zero. That is,

w(A,B) =


0 , for |A| ≠ 2,

1
|{ y ∈ B | ∃x ∈ A s.t. x ≻R y }|

, for |A| = 2.

In particular, the weights given to each binary consideration set are dependent on
the present choice problem and endogenous to individual preference, representing
the psychological strengths that a self associates with consideration sets. The
more low-ranked options a consideration set contains according to a particular
preference ordering, the higher the strength associated with the consideration set
is, which reflects a general psychological bias suggesting that negative events have
a greater impact than positive ones and people tend to give greater weights to
negative events, known as “bad is stronger than good” (Baumeister et al., 2001;
Rozin & Royzman, 2001).

It turns out that if x is the bottom-ranked alternative in B, then πλ
R(x,B) = 0;

otherwise,

πλ
R(x,B) =

∑
y∈B:x≻Ry

λ({x, y}, B)

=
∑

y∈B:x≻Ry w({x, y}, B)∑
A′∈B:

A′⊆B,A′ ̸=∅
w(A′, B)

=
∑

y∈B:x≻Ry w({x, y}, B)∑
{x′,y′}⊆B w({x′, y′}, B)

= 1
(|B| − 1) · 1

(|B|−1) + (|B| − 2) · 1
(|B|−1)−1 + . . .+ 1 · 1

2−1

= 1
|B| − 1 .

As indicated, the choice probabilities of an individual selecting with the con-
structed random attention strategy align with the scores assigned by a self with

23



the same preference under the Anti-Plurality rule.
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Figure 2: Affinity between random attention and Anti-Plurality rule in an example
where a self faces a ternary choice set B = {x, y, z} with a deterministic preference
x ≻ y ≻ z and follows the random attention rule as constructed.

By linking the attentiveness of selves with voting rules, we propose that observed
inconsistencies, such as regularity violations in real-world decision-making, may
originate from the self-level irrationalities inherent in the intrapersonal preference
aggregation process.

6 Conclusion and Future Work
In this paper, we introduce an innovative theoretical framework that accounts
for stochastic choice behavior by modeling decision-makers as having multiple
coexisting selves, each with its own preference. We argue that such an agent’s
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choice behavior emerges from aggregating the choice behavior of these selves in
a probabilistic manner, which can be conceptualized as a voting procedure. We
present two specific models: the MS-P Model, which utilizes the Plurality rule,
and the MS-AP Model, which employs the Anti-Plurality rule. We further explore
how inattentive selves, modeled through random attention strategies, can account
for the self-level choice behavior associated with these rules.

The MS-P Model is shown to be equivalent to the Random Preference Model and
is consistent with choice behavior adhering to the Regulation condition, which is
unsurprising from the perfect rationality exhibited in the self-level choice behavior.
On the other hand, the MS-AP Model, incorporating irrationality due to random
attention, effectively explains violations of the Regularity condition and accounts
for context effects such as the decoy and compromise effects, offering a richer
explanation of observed choice behavior. This work provides insights into how
internal divergences and attentional constraints can impact choice outcomes.

Despite the contributions, this paper has several limitations and evokes future
research. First, our framework is based on strict preference orderings. Extending
the theory to accommodate weak preferences could enhance its applicability to a
broader range of decision-making scenarios. Second, the current characterization
theorems depend on specific voting rules. Future research could aim to uncover how
intrapersonal preferences are aggregated in practice and explore alternative voting
mechanisms beyond those considered here. Third, eye movement and response time
data in experimental studies could provide empirical validation and refinement
of our models. Last but not least, the theory proposed is heuristic and does
not account for the real brain mechanisms underlying decision-making. Future
research could combine this framework with neurobiological findings to provide
further explanations for the cognitive processes driving stochastic choice behavior.
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A Appendix. Omitted Proofs

A.1 Proof of Proposition 3.1
Proof.
Fix distinct x, y ∈ X. By Definitions 3.5 and 3.7,

πP
µ (x, {x, y}) =

∑
R∈P

µ(R)11{x ≻R y} = πAP
µ (x, {x, y}).

A.2 Proof of Proposition 3.2
Proof.
Fix (x,B), (x,B′) ∈ E with B ⊆ B′. Since for any R ∈ P,

11{x ≻R y : ∀ y ∈ B−{x}} ⩾ 11{x ≻R y : ∀ y ∈ B′−{x}}

We obtain that

πP
µ (x,B) =

∑
R∈P

µ(R)11{x ≻R y : ∀ y ∈ B−{x}}

⩾
∑

R∈P

µ(R)11{x ≻R y : ∀ y ∈ B′−{x}}

= πP
µ (x,B′).

A.3 Proof of Proposition 3.3
Proof.
Fix distinct x, y, z ∈ X. By Proposition 3.1, it suffices to show that

πP
µ (x, {x, y}) − πP

µ (x, {x, z}) + πP
µ (y, {y, z}) ⩾ 0

By Definition 3.5, we have that

πP
µ (x, {x, y}) =

∑
R∈P

µ(R) (11{x ≻R y ≻R z} + 11{x ≻R z ≻R y} + 11{z ≻R x ≻R y})

29



πP
µ (x, {x, z}) =

∑
R∈P

µ(R) (11{x ≻R y ≻R z} + 11{x ≻R z ≻R y} + 11{y ≻R x ≻R z})

πP
µ (y, {y, z}) =

∑
R∈P

µ(R) (11{x ≻R y ≻R z} + 11{y ≻R z ≻R x} + 11{y ≻R x ≻R z}) .

Since 0 ⩽ 11{x ≻R y ≻R z} + 11{y ≻R z ≻R x} + 11{z ≻R x ≻R y} ⩽ 1, it follows
that

πP
µ (x, {x, y}) − πP

µ (x, {x, z}) + πP
µ (y, {y, z})

=
∑

R∈P

µ(R) (11{x ≻R y ≻R z} + 11{y ≻R z ≻R x} + 11{z ≻R x ≻R y}) ⩾ 0.

A.4 Proof of Theorem 3.1
Remark. The Möbius inversion formula is generally defined for functions over a
locally finite poset (see, for instance, Cioabǎ and Murty (2009) and Van Lint
and Wilson (2001)). Notably, (B, ⊆) constitutes a locally finite poset, as the set
inclusion relation ⊆ is a partial order (i.e., reflexive, transitive, and antisymmetric)
on B, and for any A ⊆ B ∈ B, the set {C ∈ B | A ⊆ C ⊆ B } is finite. Let
f, g : B → R. Then, the Möbius inversion formula implies that ∀A ∈ B,

f(A) =
∑

B∈B:A⊆B

g(B) ⇔ g(A) =
∑

B∈B:A⊆B

(−1)|B|−|A|f(B).

This implication plays an important role in proving the representation theorem of
the MS-AP Model.

Proof.
Let X be a choice set and µ ∈ ∆(P). For convenience, let ∀ (x,B) ∈ E,

νAP
π (x,B) = (|B| − 1)π(x,B) (4)

νAP
µ (x,B) = (|B| − 1)πAP

µ (x,B). (5)

We prove by first claiming important properties of ψπ, γπ, and ψµ (see later for
their proofs).

Claim A.1. Let (X,B, π) be a stochastic choice structure. Then, ψπ satisfies the
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following properties:



ψπ(x,A) =
|X|−|A|∑

k=0
(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

(
1 − νAP

π (x,B)
) , ∀ (x,A) ∈ E (6)

νAP
π (x,A) = 1 −

∑
B∈B:A⊆B

ψπ(x,B), ∀ (x,A) ∈ E (7)

∑
x∈X

ψπ(x, {x}) = 1 (8)

∑
x∈X−D

ψπ(x,X−D) =
∑
y∈D

ψπ(y,X−D + {y}), ∀D ∈ 2X−∅−X (9)

Claim A.2. Let (X,B, π) be a stochastic choice structure. If ψπ(x,A) ⩾ 0,
∀ (x,A) ∈ E, then γπ satisfies the following properties:



γπ(σ) ⩾ 0, ∀σ ∈ S (10)∑
σ∈S(D)

γπ(x, σ) = ψπ(x,X−D), ∀D ∈ 2X−∅−X and ∀x ∈ X−D (11)

∑
σ∈S(D)

γπ(σ) =
∑

x∈X−D

ψπ(x,X−D), ∀D ∈ 2X−∅−X (12)

γπ(σ) =
∑

x∈X−D

γπ(x, σ), ∀D ∈ 2X−∅−X and ∀σ ∈ S(D) (13)

γπ(σ1) =
∑

σ2∈S(X−D)
γπ(σ2, σ1), ∀D ∈ 2X−∅−X and ∀σ1 ∈ S(D) (14)

∑
σ∈S(X)

γπ(σ) = 1 (15)

Claim A.3. Let X be a choice set and µ ∈ ∆(P). Then, ψµ satisfies the following
properties:

νAP
µ (x,A) = 1 −

∑
B∈B:A⊆B

ψµ(x,B), ∀ (x,A) ∈ E (16)

ψµ(x,A) =
∑

B∈B:A⊆B

(−1)|B|−|A|
(
1 − νAP

µ (x,B)
)
, ∀ (x,A) ∈ E (17)

Necessity. Suppose that π can be rationalized by some MS-AP Model µ ∈ ∆(P);
or equivalently, ∀ (x,B) ∈ E,

νAP
π (x,B) = (|B| − 1)π(x,B) = (|B| − 1)πAP

µ (x,B) = νAP
µ (x,B).
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We show that ψπ(x,A) ⩾ 0, ∀ (x,A) ∈ E.

Fix an arbitrary (x,A) ∈ E. Since by construction, ψµ(x,A) ⩾ 0, it suffices to
show that ψπ(x,A) = ψµ(x,A).

It follows that,

ψπ(x,A) =
∑

B∈B:A⊆B

(−1)|B|−|A|
(
1 − νAP

π (x,B)
)

(by (1) and (4))

=
∑

B∈B:A⊆B

(−1)|B|−|A|
(
1 − νAP

µ (x,B)
)

(by rationalizability)

= ψµ(x,A). (by (17))

Sufficiency. Suppose that ψπ(x,A) ⩾ 0, ∀ (x,A) ∈ E. We show by construction
that π can be rationalized by the MS-AP Model µ where ∀R ∈ P, µ(R) =
γπ(ρ(R)).

As we can see from (10) and (15), the constructed µ is a valid multi-self system
since for any R ∈ P, µ(R) = γπ(ρ(R)) ⩾ 0 and

∑
R∈P µ(R) =

∑
R∈P γπ(ρ(R)) =∑

σ∈S(X) γπ(σ) = 1.

We then show that for any (x,A) ∈ E, νAP
π (x,A) = νAP

µ (x,A) and therefore
the MS-AP Model µ rationalizes π. Fix an arbitrary (x,A) ∈ E. It suffices
to show that ψπ(x,A) = ψµ(x,A) since by (7) and (16), we already have that
νAP

π (x,A) = 1 −
∑

B∈B:A⊆B ψπ(x,B) and νAP
µ (x,A) = 1 −

∑
B∈B:A⊆B ψµ(x,B).

By (3) and the construction of µ, we know that

ψµ(x,A) =
∑

R∈P

γπ(ρ(R))11{A = UR(x)}. (18)

Next, we show by cases that the equality holds as required.

If |A| = 1, namely, A = {x}, then

ψµ(x, {x}) =
∑

σ∈S(X−{x})
γπ(x, σ) (by (18))

= ψπ(x, {x}). (by (11))
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If |A| = |X|, namely, A = X, then

ψµ(x,X) =
∑

σ∈S(X−{x})
γπ(σ, x) (by (18))

= γπ(x) (by (14))

= ψπ(x,X). (by (2))

If 2 ⩽ |A| ⩽ |X| − 1, then

ψµ(x,A) =
∑

σ∈S(X−A)

∑
σ′∈S(A−{x})

γπ((σ′, x), σ) (by (18))

=
∑

σ∈S(X−A)

∑
σ′∈S(A−{x})

γπ(σ′, (x, σ))

=
∑

σ∈S(X−A)
γπ(x, σ) (by (14))

= ψπ(x,A). (by (11))

A.4.1 Proof of Claim A.1

Proof.
Proof of (6). Fix an arbitrary (x,A) ∈ E. Simply rewriting (1) and (4) gives us:

ψπ(x,A) =
|X|−|A|∑

k=0

∑
B∈B:A⊆B,
|B|=|A|+k

(−1)k
(
1 − νAP

π (x,B)
)

=
|X|−|A|∑

k=0
(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

(
1 − νAP

π (x,B)
) .

Proof of (7). Fix an arbitrary (x,A) ∈ E. Recall from (1) and (4) that

ψπ(x,A) =
∑

B∈B:A⊆B

(−1)|B|−|A|
(
1 − νAP

π (x,B)
)
.
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Apply the Möbius inversion formula, we have that

1 − νAP
π (x,B) =

∑
B∈B:A⊆B

ψπ(x,B).

Thus, νAP
π (x,B) = 1 −

∑
B∈B:A⊆B ψπ(x,B).

Proof of (8).

∑
x∈X

ψπ(x, {x}) =
∑
x∈X

|X|−1∑
k=0

(−1)k

 ∑
B∈B:{x}⊆B,

|B|=k+1

(
1 − νAP

π (x,B)
) (by (6))

=
|X|−1∑
k=0

(−1)k

∑
x∈X

∑
B∈B:{x}⊆B,

|B|=k+1

(
1 − νAP

π (x,B)
) .

For any integer k with 0 ⩽ k ⩽ |X| − 1, since ∀B ∈ B,
∑

x∈B π(x,B) = 1,

∑
x∈X

∑
B∈B:{x}⊆B,

|B|=k+1

(
1 − νAP

π (x,B)
)

=
∑

B∈B:
|B|=k+1

∑
x∈B

(
1 − νAP

π (x,B)
)

=
∑

B∈B:
|B|=k+1

(
|B| −

∑
x∈B

(|B| − 1)π(x,B)
)

(by (4))

=
∑

B∈B:
|B|=k+1

(|B| − (|B| − 1))

=
(

|X|
k + 1

)
.

Hence, by the binomial formula,

∑
x∈X

ψπ(x, {x}) =
|X|−1∑
k=0

(−1)k

(
|X|
k + 1

)
= −

|X|∑
k=1

(−1)k

(
|X|
k

)
= 1 −

|X|∑
k=0

(−1)k

(
|X|
k

)

= 1 − (−1 + 1)|X| = 1.

Proof of (9). It is equivalent to show that ∀A ∈ 2X−∅−X,

∑
x∈A

ψπ(x,A) =
∑

y∈X−A

ψπ(y,A+ {y}).
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Fix an arbitrary A ∈ 2X−∅−X. First, consider the LHS of this equation.

LHS =
∑
x∈A

ψπ(x,A)

=
∑
x∈A

|X|−|A|∑
k=0

(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

(
1 − νAP

π (x,B)
) (by (6))

=
∑
x∈A

(
1 − νAP

π (x,A)
)

+
|X|−|A|∑

k=1
(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

∑
x∈A

(
1 − νAP

π (x,B)
) .

Since
∑

x∈A π(x,A) = 1, and for any B ∈ B with A ⊂ B,
∑

x∈A π(x,B) =
1 −

∑
y∈B−A π(y,B), we have that

∑
x∈A

(
1 − νAP

π (x,A)
)

= |A| −
∑
x∈A

(|A| − 1)π(x,A) (by (4))

= 1,

and that for any B ∈ B with A ⊂ B,

∑
x∈A

(
1 − νAP

π (x,B)
)

= |A| −
∑
x∈A

(|B| − 1)π(x,B) (by (4))

= |A| − (|B| − 1)

1 −
∑

y∈B−A

π(y,B)


= 1 − (|B| − |A|) + (|B| − 1)

∑
y∈B−A

π(y,B)

= 1 −
∑

y∈B−A

(1 − (|B| − 1)π(y,B))

= 1 −
∑

y∈B−A

(
1 − νAP

π (y,B)
)
. (by (4))

Then, substitute the two parts back into the LHS:

LHS = 1 +
|X|−|A|∑

k=1
(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

1 −
∑

y∈B−A

(
1 − νAP

π (y,B)
)

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= 1 +
|X|−|A|∑

k=1
(−1)k

(
|X| − |A|

k

)
−

|X|−|A|∑
k=1

(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

∑
y∈B−A

(
1 − νAP

π (y,B)
)

= (−1 + 1)|X|−|A| +
|X|−|A|∑

k=1
(−1)k−1

 ∑
B∈B:A⊆B,
|B|=|A|+k

∑
y∈B−A

(
1 − νAP

π (y,B)
)

=
|X|−|A|−1∑

k=0
(−1)k

 ∑
B∈B:A⊆B,
|B|=|A|+k

∑
y∈B−A

(
1 − νAP

π (y,B)
) .

Then, consider the RHS of this equation.

RHS =
∑

y∈X−A

ψπ(y,A+ {y})

=
∑

y∈X−A

|X|−|A|−1∑
k=0

(−1)k

 ∑
B∈B:A+{y}⊆B,

|B|=|A|+k+1

(
1 − νAP

π (y,B)
) (by (6))

=
|X|−|A|−1∑

k=0
(−1)k

 ∑
y∈X−A

∑
B∈B:A+{y}⊆B,

|B|=|A|+k+1

(
1 − νAP

π (y,B)
)

=
|X|−|A|−1∑

k=0
(−1)k

 ∑
B∈B:A⊆B,

|B|=|A|+k+1

∑
y∈B−A

(
1 − νAP

π (y,B)
) .

Thus, we reach the conclusion that the LHS equals the RHS.

A.4.2 Proof of Claim A.2

Proof.
Suppose throughout the whole proof that ψπ(x,A) ⩾ 0, ∀ (x,A) ∈ E.

Note that for any B ∈ B with |B| ⩾ 2,

{σ | σ ∈ S(B) } = { (σ̂, x) | x ∈ B, σ̂ ∈ S(B−{x}) }

= { (x, σ̂) | x ∈ B, σ̂ ∈ S(B−{x}) } .
(19)
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Proof of (10). Since ψπ(x,A) ⩾ 0, ∀ (x,A) ∈ E, it can be easily seen from the
definition of γπ in (2) that ∀σ ∈ S, γπ(σ) ⩾ 0.

Proof of (11). Since for any D ∈ 2X−∅−X, |D| = k for some integer k with
1 ⩽ k ⩽ |X| − 1, we show the statement (11) by induction.

Base case: For any D ∈ 2X−∅−X with |D| = 1, we assume w.l.o.g. that D =
{y} for some y ∈ X. Then, the statement reduces to ∀x ∈ X−{y}, γπ(x, y) =
ψπ(x,X−{y}). Fix an arbitrary x ∈ X−{y}.

If γπ(y) ̸= 0, then

γπ(x, y) = ψπ(x,X−{y}) · γπ(y)
γπ(y) (by (2))

= ψπ(x,X−{y}).

If γπ(y) = 0, then by (2), γπ(x, y) = 0. We then show that ψπ(x,X−{y}) = 0.
It suffices to show that

∑
x∈X−{y} ψπ(x,X−{y}) = 0 since for any (x,A) ∈ E,

ψπ(x,A) ⩾ 0.

It follows that

∑
x∈X−{y}

ψπ(x,X−{y}) = ψπ(y,X) (by (9))

= γπ(y) (by (2))

= 0.

Induction step: Assume the induction hypothesis that for any integer k (1 ⩽ k ⩽

|X| − 2), it holds that ∀C ∈ 2X−∅−X with |C| = k and ∀ z ∈ X−C,

∑
σ̂∈S(C)

γπ(z, σ̂) = ψπ(z,X−C). (20)

Now consider any D ∈ 2X−∅−X with |D| = k + 1 and any x ∈ X−D.

If
∑

σ′∈S(D) γπ(σ′) ̸= 0, then

∑
σ∈S(D)

γπ(x, σ) =
∑

σ∈S(D)

ψπ(x,X−D) · γπ(σ)∑
σ′∈S(D) γπ(σ′) (by (2))

= ψπ(x,X−D)
∑

σ∈S(D) γπ(σ)∑
σ′∈S(D) γπ(σ′)
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= ψπ(x,X−D).

If
∑

σ′∈S(D) γπ(σ′) = 0, then by (2),
∑

σ∈S(D) γπ(σ, x) = 0. We next show that
ψπ(x,X−D) = 0. It suffices to show that

∑
x∈X−D ψπ(x,X−D) = 0.

By (10),
∑

σ′∈S(D) γπ(σ′) = 0 implies that γπ(σ) = 0 for any σ ∈ S(D). Let
C = D−{y} for any y ∈ D. Then, by (19), we have that γπ(y, σ̂) = 0 for any
y ∈ D and σ̂ ∈ S(C).

It follows that

∑
x∈X−D

ψπ(x,X−D) =
∑
y∈D

ψπ(y,X−D + {y}) (by (9))

=
∑
y∈D

ψπ(y,X−C)

=
∑
y∈D

∑
σ̂∈S(C)

γπ(y, σ̂) (by (20))

= 0.

Proof of (12). For any D ∈ 2X−∅−X with |D| = 1, we assume w.l.o.g. that D =
{y} for some y ∈ X. Then, the statement reduces to γπ(y) =

∑
x∈X−{y} ψπ(x,X−{y}).

It follows that

γπ(y) = ψπ(y,X) (by (2))

=
∑

x∈X−{y}
ψπ(x,X−{y}). (by (9))

Now consider an arbitrary D ∈ 2X−∅−X with |D| ⩾ 2.

∑
σ∈S(D)

γπ(σ) =
∑
y∈D

∑
σ̂∈S(D−{y})

γπ(y, σ̂) (by (19))

=
∑
y∈D

ψπ(y,X−D + {y}) (by (11))

=
∑

x∈X−D

ψπ(x,X−D). (by (9))

Proof of (13). Consider any D ∈ 2X−∅−X and any σ ∈ S(D).
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If
∑

σ′∈S(D) γπ(σ′) ̸= 0, then

∑
x∈X−D

γπ(x, σ) =
∑

x∈X−D

ψπ(x,X−D) · γπ(σ)∑
σ′∈S(D) γπ(σ′) (by (2))

= γπ(σ)
∑

x∈X−D ψπ(x,X−D)∑
σ′∈S(D) γπ(σ′)

= γπ(σ)
∑

σ∈S(D) γπ(σ)∑
σ′∈S(D) γπ(σ′) (by (12))

= γπ(σ).

If
∑

σ′∈S(D) γπ(σ′) = 0, which by (10), implies that γπ(σ) = 0, then by (2),∑
x∈X−D γπ(x, σ) = 0 = γπ(σ).

Proof of (14). Since for any D ∈ 2X−∅−X, |D| = |X| − k for some integer k with
1 ⩽ k ⩽ |X| − 1, we show the statement (14) by induction.

Base case: For any D ∈ 2X−∅−X with |D| = X − 1, we assume w.l.o.g. that
D = X−{y} for some y ∈ X. Then, the statement reduces to that for any σ1 ∈
S(X−{y}), γπ(σ1) = γπ(y, σ1), which is true directly from (13).

Induction step: Assume the induction hypothesis that for any integer k (1 ⩽ k ⩽

|X|−2), it holds that for any C ∈ 2X−∅−X with |C| = |X|−k and any σ′
1 ∈ S(C),

γπ(σ′
1) =

∑
σ′

2∈S(X−C)
γπ(σ′

2, σ
′
1). (21)

Now consider any D ∈ 2X−∅−X with |D| = |X| − (k + 1) and any σ1 ∈ S(D).
We have that

γπ(σ1) =
∑

x∈X−D

γπ(x, σ1) (by (13))

=
∑

x∈X−D

∑
σ′

2∈S(X−D−{x})
γπ(σ′

2, (x, σ1)) (by (21))

=
∑

x∈X−D

∑
σ′

2∈S(X−D−{x})
γπ((σ′

2, x), σ1))

=
∑

σ2∈S(X−D)
γπ(σ2, σ1). (by (19))
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Proof of (15).

∑
σ∈S(X)

γπ(σ) =
∑
x∈X

∑
σ̂∈S(X−{x})

γπ(x, σ̂) (by (19))

=
∑
x∈X

ψπ(x, {x}) (by (11))

= 1. (by (8))

A.4.3 Proof of Claim A.3

Proof.
Proof of (16). By (4) and the definition of πAP

µ , we have that for any (x,A) ∈ E,

νAP
µ (x,A) =

∑
R∈P

µ(R)11{x ≻R y : ∃ y ∈ A−{x}}

=
∑

R∈P

µ(R)

1 −
∑

B∈B:A⊆B

11{B = UR(x)}


=
∑

R∈P

µ(R) −
∑

R∈P

µ(R)

 ∑
B∈B:A⊆B

11{B = UR(x)}


= 1 −

∑
B∈B:A⊆B

∑
R∈P

µ(R)11{B = UR(x)}


= 1 −

∑
B∈B:A⊆B

ψµ(x,B). (by (3))

Proof of (17). Applying the Möbius inversion formula on (16) gives us that
∀ (x,A) ∈ E,

ψµ(x,A) =
∑

B∈B:A⊆B

(−1)|B|−|A|
(
1 − νAP

µ (x,B)
)
.
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B Appendix. Supplements

B.1 A Representation Theorem for MS-P Model
Let (X,B, π) be a stochastic choice structure. We first define directly from π a
function ϕπ : E → R where ∀ (x,A) ∈ E,

ϕπ(x,A) =
∑

B∈B:A⊆B

(−1)|B|−|A|π(x,B). (22)

We then define from ϕπ another function βπ : S → R where

∀x ∈ X, βπ(x) = ϕπ(x,X),

∀ (σ, x) such that σ ∈ S(D), x ∈ X−D for some D ∈ 2X−∅−X,

βπ(σ, x) =


ϕπ(x,X−D) · βπ(σ)∑

σ′∈S(D) βπ(σ′) , if
∑

σ′∈S(D)
βπ(σ′) ̸= 0,

0 , if
∑

σ′∈S(D)
βπ(σ′) = 0,

(23)

by noticing that S = X ∪ { (σ, x) | ∃D ∈ 2X−∅−X : σ ∈ S(D), x ∈ X−D }.

Theorem B.1 (MS-P Representation). Let (X,B, π) be a stochastic choice struc-
ture. π ∈ ΠMS-P if and only if ϕπ(x,A) ⩾ 0, ∀ (x,A) ∈ E. Furthermore, if
π ∈ ΠMS-P , then there exists µ ∈ ∆(P) where µ(R) = βπ(ρ(R)), ∀R ∈ P such
that π(x,B) = πP

µ (x,B), ∀ (x,B) ∈ E.

Proof.
The proof is omitted here and can be obtained from Barberá and Pattanaik (1986)
and Falmagne (1978).

B.2 Aggregation by Borda Count Rule
Under the Borda Count rule, a voter assigns scores to alternatives based on their
ranking: zero to the bottom-ranked alternative, one to the next-to-last alternative,
and so forth, i.e., the normalized scoring vector is ( 2(m−1)

m(m−1) ,
2(m−2)
m(m−1) , . . . , 0) for

m ⩾ 2 alternatives. Alternatively, we denote as sBC
R (x,B) the score assigned by

an R-type self to an arbitrary alternative x in a choice situation B under the Borda
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Count rule, where

sBC
R (x,B) =


1 , for |B| = 1,

2
|B|(|B| − 1)

∑
y∈B−{x}

11{x ≻R y} , for |B| ⩾ 2.

Formally, we define the MS-BC Model exploiting Definition 3.4 as follows.

Definition B.1 (MS-BC Model). Let X be an alternative space. Suppose that
an agent has a multi-self system µ ∈ ∆(P) voting in a probabilistic manner by
the Borda Count rule. We refer to such µ as an MS-BC Model. The generated
stochastic choice function πBC

µ is determined as ∀ (x,B) ∈ E,

πBC
µ (x,B) =


1 , for |B| = 1,

2
|B|(|B| − 1)

∑
R∈P

µ(R)

 ∑
y∈B−{x}

11{x ≻R y}

 , for |B| ⩾ 2.

We denote by ΠMS-BC the set of all possible stochastic choice functions generated
by some MS-BC Model µ ∈ ∆(P).

Proposition B.1. Let X be an alternative space and µ ∈ ∆(P) be a multi-self
system. Then, πBC

µ satisfies that for any (x,B) ∈ E with |B| ⩾ 2, πBC
µ (x,B) =

2
|B|(|B|−1)

∑
y∈B−{x} π

BC
µ (x, {x, y}).

Proof.
Simply applying Definition B.1, we have that for any (x,B) ∈ E with |B| ⩾ 2,

πBC
µ (x,B) = 2

|B|(|B| − 1)
∑

y∈B−{x}

∑
R∈P

µ(R)11{x ≻R y}


= 2

|B|(|B| − 1)
∑

y∈B−{x}
πBC

µ (x, {x, y}).

This proposition asserts that in the MS-BC Model, the likelihood of choosing from
choice sets with more than two alternatives can be fully derived from binary choice
probabilities. This restrictiveness limits the empirical applicability of the MS-BC
Model, as real-world observed choice patterns are rarely expected to conform to
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this stringent prediction based on aggregating preferences by the Borda Count
rule.
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